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The degree-diameter and the degree-girth problem

N(d , k) - largest order of a graph of maximum degree d , diameter k

n(d , `) - smallest order of a regular graph of degree d and girth `

The Moore bounds and asymptotics for fixed k , ` and d →∞:

N(d , k) ≤ 1 + d + d(d − 1) + . . .+ d(d − 1)k−1 ∼ dk

` odd: n(d , `) ≥ 1 + d + d(d − 1) + . . .+ d(d − 1)(`−3)/2 ∼ d (`−1)/2

` even: n(d , `) ≥ 2[1 + (d − 1) + . . .+ (d − 1)(`−2)/2] ∼ 2d (`−2)/2

Some of the best currently available constructions for both problems are
based on vertex-transitive graphs.

Aim:

To explore possible vertex-transitive embeddings of these graphs.
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Vertex-transitive embeddings

We will consider only orientably vertex-transitive embeddings.

Theorem [Širáň and Tucker 2007]

Let Γ be a connected regular graph of valency at least three. Then, Γ has
an orientably vertex-transitive embedding if and only if Aut(Γ) contains a
vertex-transitive subgroup with free cyclic vertex stabilizers.

In the special case when Γ has valency d and the free cyclic stabilizers
have order d as well, we obtain:

Corollary [Gardiner, Nedela, Širáň, Škoviera 1999]

A connected regular graph of valency ≥ 3 admits an orientably regular
embedding (i.e., gives an orientably regular map) iff Aut(Γ) contains a
vertex-transitive subgroup with regular cyclic vertex stabilizers.

Extensions to vertex-transitive maps admitting orientation-reversing
automorphisms are also available but will not be discussed in this talk.
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The degree-girth problem for girth six

∆ - dipole with V = {u, v} and m darts ei u→v , i ∈ I , |I | = m.

Let {z1, . . . , zq+1} be a perfect difference set in Zq2+q+1. If
α(ei ) = zi , the lift ∆α is a cage of girth 6; degree q + 1, order
2(q2 + q + 1).

Incidence graphs of finite projective planes. [Folklore]

Let I = F = GF (q) and let β(ei ) = (i , i2) ∈ F+ × F+ for i ∈ I .
Then ∆β is a ‘near-cage’ of girth 6; degree q, order 2q2.

Biaffine planes; [Brown 1967]. β: [Š 2001].

Let I = F× and let γ(ei ) = (i , i) ∈ F+ × F× for i ∈ I . Then ∆γ is a
‘near-cage’ of girth 6; degree q − 1, order 2q(q − 1).

[Abreu, Funk, Labbate, Napolitano 2006] γ: [Macbeth, Š, Širáň ’12].

Let I = F×\{1} and let δ(ei ) = (i , i − 1) ∈ F× × F× for i ∈ I . Then
∆δ is a ‘near-cage’ of girth 6; degree q − 2, order 2(q − 1)2.

[Abreu, Funk, Labbate, Napolitano 2006] δ: [LMMŠŠT 2012].
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Let I = F×\{1} and let δ(ei ) = (i , i − 1) ∈ F× × F× for i ∈ I . Then
∆δ is a ‘near-cage’ of girth 6; degree q − 2, order 2(q − 1)2.

[Abreu, Funk, Labbate, Napolitano 2006] δ: [LMMŠŠT 2012].
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Incidence graphs of finite projective planes

Lifts IP(q) of the dipole ∆, with I = {1, 2, . . . , q + 1}, and voltages
α(ei ) = zi from a perfect difference set in Zq2+q+1; valency q + 1, order
2(q2 + q + 1); cages of girth 6.

4-arc-transitive; Aut(IP(q)) ' PΓL(3, q) o Z2 [Folklore]

If q = 2, IP(q) is the Heawood graph and it admits an orientably regular
embedding on a torus; the vertex stabilizer is induced by the Frobenius
automorphism of GF (23).

Looking at possible orders of subgroups of PSL(3, q) [Mitchell 1911,
Hartley 1925; King 2005], or using the result of [Singerman 1986] based
on [Higman, McLaughlin 1961], gives:

Proposition 1

The graph IP(q) is a Cayley graph and hence admits a vertex-transitive
embedding, but does not admit an orientably regular map if q /∈ {2, 8}.
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Incidence graphs of biaffine planes

Lifts B(q) = ∆β of the dipole ∆, with I = F = GF (q), q = pn and
voltages on ∆: β(ei ) = (i , i2) ∈ F+ × F+ for i ∈ I , valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups
gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with
free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In
particular, if n = 1 and q = p, the graph B(q) admits an orientably
regular embedding.

Let B ′(q) be a ‘near-cage’ obtained from B(q) by removing the perfect
matching induced by e0 with voltage (0, 0). The automorphism of ∆− e0
given by ei 7→ eiξ for a p. e. ξ ∈ F lifts to an automorphism of B ′(q)
fixing a vertex and acting regularly on the incident edges. Therefore:

Proposition 3

The graph B ′(q) admits an orientably regular embedding.
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The Abreu-Funk-Labbate-Napolitano graphs

AFLN1(q): Lifts of ∆γ of the dipole ∆, with I = F×, and voltages on ∆:
γ(ei ) = (i , i) ∈ F+ × F× for i ∈ I , valency q − 1.

Here the automorphism ei 7→ eiξ of ∆ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of ∆δ of the dipole ∆, with I = F×\{1}; voltages on
∆: δ(ei ) = (i , i − 1) ∈ F× × F× for i ∈ I , valency q − 2.

Problems with free cyclic stabilizers of order dividing q − 2. But:
If q = pn, n a prime, Fp is a prime field of F and I = F\Fp, then the
Galois group Aut(F ) ' Zn induces on I a free cyclic action on the
voltages δ with cycles of length n (note that n | pn − p, by Fermat’s
Little Theorem). Denoting the lift by Γ(pn), we have:

Proposition 5

For prime n the graph Γ(pn) admits an orientably vertex-transitive
embedding with cyclic stabilizer of order n.
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Proposition 5

For prime n the graph Γ(pn) admits an orientably vertex-transitive
embedding with cyclic stabilizer of order n.



The McKay-Miller-Širáň graphs

∆∗q - dipole with q u→v edges ex ,
x ∈ F = GF (q), q ≡ 1 mod 4, with (q − 1)/4 loops at both u, v

α in F+ × F+, α(ex) = (x , x2); loops at u, v receive (0, ξ2i ), (0, ξ2i+1)

The lift (∆∗q)α has order 8
9(d + 1

2)2 for d = (3q − 1)/2, diameter 2

[Š 2001; McKay, Miller, Širáň 1998]
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∆∗q - dipole with q u→v edges ex ,
x ∈ F = GF (q), q ≡ 1 mod 4, with (q − 1)/4 loops at both u, v

α in F+ × F+, α(ex) = (x , x2); loops at u, v receive (0, ξ2i ), (0, ξ2i+1)

The lift (∆∗q)α has order 8
9(d + 1

2)2 for d = (3q − 1)/2, diameter 2
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The Faber-Moore-Chen graphs

Define a digraph on the vertex set consisting of k-strings of distinct
symbols from L = {1, 2, . . . , δ + 1}, 3 ≤ k ≤ δ, as follows. From each
v = x1x2 . . . xk consider an arc into vy = x2 . . . xky , y ∈ L \ {x1, . . . , xk}
and also, for 1 ≤ i ≤ k − 1, an arc into vi obtained from v by moving xi
to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining
the graph FMC (d , k); vertex-transitive graph of degree d = 2δ − 1 and
diameter k , order o(d , k) = ((d + 3)/2)!/((d + 3)/2− k)!; note that
d ≥ 5 and 3 ≤ k ≤ (d + 1)/2.

[MŠŠV ’10] based on [Jones ’05]: For any odd d ≥ 11 and k such that
3 ≤ k ≤ (d + 1)/2 we have Aut(FMC (d , k)) ' Sm where m = (d + 3)/2.

Proposition 7

For every odd d ≥ 11 and k such that 3 ≤ k ≤ (d + 1)/2 the graph
FMC (d , k) admits an orientably vertex-transitive embedding iff it is a
Cayley graph. In particular, FMC (d , k) has no such embedding unless
k = (d ± 1)/2 or (k , d) ∈ {(5, 21), (4, 19), (3, 2q − 1)}, q a prime power.
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Remarks

Forthcoming projects:

Extension to other interesting vertex-transitive graphs for the
degree-diameter and the degree-girth problems

Extension to vertex-transitive embeddings with orientation reversing
automorphisms on orientable surfaces

Extension to vertex-transitive embeddings on non-orientable surfaces

THANK YOU!
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