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Aim:

To explore possible vertex-transitive embeddings of these graphs.
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Vertex-transitive embeddings

We will consider only orientably vertex-transitive embeddings.

Theorem [Sirait and Tucker 2007]

Let [ be a connected regular graph of valency at least three. Then, I has
an orientably vertex-transitive embedding if and only if Aut(I') contains a
vertex-transitive subgroup with free cyclic vertex stabilizers.

In the special case when I has valency d and the free cyclic stabilizers
have order d as well, we obtain:

Corollary [Gardiner, Nedela, Siran, Skoviera 1999]

A connected regular graph of valency > 3 admits an orientably regular
embedding (i.e., gives an orientably regular map) iff Aut(I') contains a
vertex-transitive subgroup with regular cyclic vertex stabilizers.

Extensions to vertex-transitive maps admitting orientation-reversing
automorphisms are also available but will not be discussed in this talk.
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Lifts /IP(q) of the dipole A, with / = {1,2,..., g+ 1}, and voltages
a(e;) = z; from a perfect difference set in Zg4q41; Valency g + 1, order
2(q? + g + 1); cages of girth 6.

4-arc-transitive; Aut(IP(q)) ~ PTL(3,q) x Z, [Folklore]

If g =2, IP(q) is the Heawood graph and it admits an orientably regular
embedding on a torus; the vertex stabilizer is induced by the Frobenius
automorphism of GF(23).

Looking at possible orders of subgroups of PSL(3, q) [Mitchell 1911,
Hartley 1925; King 2005], or using the result of [Singerman 1986] based
on [Higman, McLaughlin 1961], gives:

Proposition 1

The graph IP(q) is a Cayley graph and hence admits a vertex-transitive
embedding, but does not admit an orientably regular map if g ¢ {2, 8}.
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Lifts B(q) = AP of the dipole A, with | = F = GF(q), g = p" and
voltages on A: 3(e;) = (i,i?) € F* x F* for i € I, valency q.
Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups
gives:

Proposition 2

The graph B(g) admits an orientably vertex-transitive embedding with
free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In
particular, if n =1 and g = p, the graph B(q) admits an orientably
regular embedding.

Let B’(q) be a ‘near-cage’ obtained from B(q) by removing the perfect
matching induced by ey with voltage (0,0). The automorphism of A — ey
given by ej — ej¢ for a p. e. £ € F lifts to an automorphism of B'(q)
fixing a vertex and acting regularly on the incident edges. Therefore:

Proposition 3

The graph B’(q) admits an orientably regular embedding.
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AFLN1(q): Lifts of A7 of the dipole A, with / = F*, and voltages on A:
v(e)=(i,i) e FT x F* for i € I, valency g — 1.

Here the automorphism e; — ej¢ of A lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of A? of the dipole A, with / = F*\{1}; voltages on
A: O(e) = (i,i—1)e F* x F* forie€l, valency g — 2.

Problems with free cyclic stabilizers of order dividing g — 2. But:

If g =p", naprime, Fpis a prime field of F and | = F\Fp, then the
Galois group Aut(F) ~ Z, induces on [ a free cyclic action on the
voltages & with cycles of length n (note that n | p” — p, by Fermat's
Little Theorem). Denoting the lift by '(p"), we have:

Proposition 5

For prime n the graph I'(p"”) admits an orientably vertex-transitive
embedding with cyclic stabilizer of order n.
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A - dipole with g u—v edges ey,

x € F = GF(q), g =1 mod 4, with (g — 1)/4 loops at both u, v

ain Ft x FT, a(e) = (x,x?); loops at u, v receive (0,£%"), (0,£2+1)
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Proposition 6

MMS(q) have no orientably vertex-transitive embeddings.
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Define a digraph on the vertex set consisting of k-strings of distinct
symbols from L ={1,2,...,0 + 1}, 3 < k <, as follows. From each

V = X1X2...Xk consider an arcinto vy = xo...xcy, ¥y € L\ {x1,...,x}
and also, for 1 </ < k —1, an arc into v; obtained from v by moving x;
to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining
the graph FMC(d, k); vertex-transitive graph of degree d =26 — 1 and
diameter k, order o(d, k) = ((d +3)/2)!/((d + 3)/2 — k)!; note that
d>5and3< k< (d+1)/2.

[MSSV '10] based on [Jones '05]: For any odd d > 11 and k such that
3 <k <(d+1)/2 we have Aut(FMC(d, k)) ~ S, where m = (d + 3)/2.

Proposition 7

For every odd d > 11 and k such that 3 < k < (d + 1)/2 the graph
FMC(d, k) admits an orientably vertex-transitive embedding iff it is a
Cayley graph. In particular, FMC(d, k) has no such embedding unless
k=(d=x1)/2or (k,d) e {(5,21),(4,19),(3,29 — 1)}, g a prime power.
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