Vertex-transitive embeddings of graphs related to the degree-diameter and the degree-girth problems

Jana Šiagiová

Slovak University of Technology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

N(d, k) - largest order of a graph of maximum degree d, diameter k

N(d, k) - largest order of a graph of maximum degree d, diameter k $n(d, \ell)$ - smallest order of a regular graph of degree d and girth ℓ

N(d, k) - largest order of a graph of maximum degree d, diameter k $n(d, \ell)$ - smallest order of a regular graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$:

•
$$N(d,k) \leq 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$$

•
$$\ell$$
 odd: $n(d, \ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$

• ℓ even: $n(d, \ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ つ ・

N(d, k) - largest order of a graph of maximum degree d, diameter k $n(d, \ell)$ - smallest order of a regular graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$:

•
$$N(d,k) \leq 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$$

•
$$\ell$$
 odd: $n(d, \ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$

•
$$\ell$$
 even: $n(d, \ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

Some of the best currently available constructions for both problems are based on vertex-transitive graphs.

N(d, k) - largest order of a graph of maximum degree d, diameter k $n(d, \ell)$ - smallest order of a regular graph of degree d and girth ℓ

The Moore bounds and asymptotics for fixed k, ℓ and $d \to \infty$:

•
$$N(d,k) \leq 1 + d + d(d-1) + \ldots + d(d-1)^{k-1} \sim d^k$$

•
$$\ell$$
 odd: $n(d, \ell) \ge 1 + d + d(d-1) + \ldots + d(d-1)^{(\ell-3)/2} \sim d^{(\ell-1)/2}$

•
$$\ell$$
 even: $n(d, \ell) \ge 2[1 + (d-1) + \ldots + (d-1)^{(\ell-2)/2}] \sim 2d^{(\ell-2)/2}$

Some of the best currently available constructions for both problems are based on vertex-transitive graphs.

Aim:

To explore possible vertex-transitive embeddings of these graphs.

Vertex-transitive embeddings

Vertex-transitive embeddings

We will consider only orientably vertex-transitive embeddings.

(ロ)、

Theorem [Širáň and Tucker 2007]

Let Γ be a connected regular graph of valency at least three. Then, Γ has an orientably vertex-transitive embedding if and only if $Aut(\Gamma)$ contains a vertex-transitive subgroup with free cyclic vertex stabilizers.

Theorem [Širáň and Tucker 2007]

Let Γ be a connected regular graph of valency at least three. Then, Γ has an orientably vertex-transitive embedding if and only if $Aut(\Gamma)$ contains a vertex-transitive subgroup with free cyclic vertex stabilizers.

In the special case when Γ has valency d and the free cyclic stabilizers have order d as well, we obtain:

Theorem [Širáň and Tucker 2007]

Let Γ be a connected regular graph of valency at least three. Then, Γ has an orientably vertex-transitive embedding if and only if $Aut(\Gamma)$ contains a vertex-transitive subgroup with free cyclic vertex stabilizers.

In the special case when Γ has valency d and the free cyclic stabilizers have order d as well, we obtain:

Corollary [Gardiner, Nedela, Širáň, Škoviera 1999]

A connected regular graph of valency ≥ 3 admits an orientably regular embedding (i.e., gives an orientably regular map) iff $Aut(\Gamma)$ contains a vertex-transitive subgroup with regular cyclic vertex stabilizers.

Theorem [Širáň and Tucker 2007]

Let Γ be a connected regular graph of valency at least three. Then, Γ has an orientably vertex-transitive embedding if and only if $Aut(\Gamma)$ contains a vertex-transitive subgroup with free cyclic vertex stabilizers.

In the special case when Γ has valency d and the free cyclic stabilizers have order d as well, we obtain:

Corollary [Gardiner, Nedela, Širáň, Škoviera 1999]

A connected regular graph of valency ≥ 3 admits an orientably regular embedding (i.e., gives an orientably regular map) iff $Aut(\Gamma)$ contains a vertex-transitive subgroup with regular cyclic vertex stabilizers.

Extensions to vertex-transitive maps admitting orientation-reversing automorphisms are also available but will not be discussed in this talk.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

 Δ - dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.

(ロ)、(型)、(E)、(E)、(E)、(D)、(O)

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes.

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$.

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967].

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

• Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let $I = F^{\times}$ and let $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$. Then Δ^{γ} is a 'near-cage' of girth 6; degree q 1, order 2q(q 1).

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let I = F[×] and let γ(e_i) = (i, i) ∈ F⁺ × F[×] for i ∈ I. Then Δ^γ is a 'near-cage' of girth 6; degree q − 1, order 2q(q − 1).
 [Abreu, Funk, Labbate, Napolitano 2006]

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let I = F[×] and let γ(e_i) = (i, i) ∈ F⁺ × F[×] for i ∈ I. Then Δ^γ is a 'near-cage' of girth 6; degree q − 1, order 2q(q − 1).
 [Abreu, Funk, Labbate, Napolitano 2006] γ: [Macbeth, Š, Širáň '12].

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let I = F[×] and let γ(e_i) = (i, i) ∈ F⁺ × F[×] for i ∈ I. Then Δ^γ is a 'near-cage' of girth 6; degree q − 1, order 2q(q − 1).
 [Abreu, Funk, Labbate, Napolitano 2006] γ: [Macbeth, Š, Širáň '12].
- Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q 2, order $2(q 1)^2$.

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let I = F[×] and let γ(e_i) = (i, i) ∈ F⁺ × F[×] for i ∈ I. Then Δ^γ is a 'near-cage' of girth 6; degree q − 1, order 2q(q − 1).
 [Abreu, Funk, Labbate, Napolitano 2006] γ: [Macbeth, Š, Širáň '12].
- Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q 2, order $2(q 1)^2$. [Abreu, Funk, Labbate, Napolitano 2006]

- Δ dipole with $V = \{u, v\}$ and m darts $e_i \ u \rightarrow v$, $i \in I$, |I| = m.
- Let $\{z_1, \ldots, z_{q+1}\}$ be a perfect difference set in Z_{q^2+q+1} . If $\alpha(e_i) = z_i$, the lift Δ^{α} is a cage of girth 6; degree q + 1, order $2(q^2 + q + 1)$.

Incidence graphs of finite projective planes. [Folklore]

- Let I = F = GF(q) and let $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$. Then Δ^{β} is a 'near-cage' of girth 6; degree q, order $2q^2$. Biaffine planes; [Brown 1967]. β : [Š 2001].
- Let I = F[×] and let γ(e_i) = (i, i) ∈ F⁺ × F[×] for i ∈ I. Then Δ^γ is a 'near-cage' of girth 6; degree q − 1, order 2q(q − 1).
 [Abreu, Funk, Labbate, Napolitano 2006] γ: [Macbeth, Š, Širáň '12].
- Let $I = F^{\times} \setminus \{1\}$ and let $\delta(e_i) = (i, i 1) \in F^{\times} \times F^{\times}$ for $i \in I$. Then Δ^{δ} is a 'near-cage' of girth 6; degree q 2, order $2(q 1)^2$. [Abreu, Funk, Labbate, Napolitano 2006] δ : [LMMŠŠT 2012].

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲□▶

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$;

・ロト・日本・モート モー うへの

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$; cages of girth 6.

・ロト・日本・モート モー うへの

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$; cages of girth 6.

4-arc-transitive; $Aut(IP(q)) \simeq P\Gamma L(3,q) \rtimes Z_2$ [Folklore]

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$; cages of girth 6.

4-arc-transitive; $Aut(IP(q)) \simeq P\Gamma L(3,q) \rtimes Z_2$ [Folklore]

If q = 2, IP(q) is the Heawood graph and it admits an orientably regular embedding on a torus; the vertex stabilizer is induced by the Frobenius automorphism of $GF(2^3)$.

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$; cages of girth 6.

4-arc-transitive; $Aut(IP(q)) \simeq P\Gamma L(3,q) \rtimes Z_2$ [Folklore]

If q = 2, IP(q) is the Heawood graph and it admits an orientably regular embedding on a torus; the vertex stabilizer is induced by the Frobenius automorphism of $GF(2^3)$.

Looking at possible orders of subgroups of PSL(3, q) [Mitchell 1911, Hartley 1925; King 2005], or using the result of [Singerman 1986] based on [Higman, McLaughlin 1961], gives:

Lifts IP(q) of the dipole Δ , with $I = \{1, 2, ..., q + 1\}$, and voltages $\alpha(e_i) = z_i$ from a perfect difference set in Z_{q^2+q+1} ; valency q + 1, order $2(q^2 + q + 1)$; cages of girth 6.

4-arc-transitive; $Aut(IP(q)) \simeq P\Gamma L(3,q) \rtimes Z_2$ [Folklore]

If q = 2, IP(q) is the Heawood graph and it admits an orientably regular embedding on a torus; the vertex stabilizer is induced by the Frobenius automorphism of $GF(2^3)$.

Looking at possible orders of subgroups of PSL(3, q) [Mitchell 1911, Hartley 1925; King 2005], or using the result of [Singerman 1986] based on [Higman, McLaughlin 1961], gives:

Proposition 1

The graph IP(q) is a Cayley graph and hence admits a vertex-transitive embedding, but does not admit an orientably regular map if $q \notin \{2, 8\}$.

Incidence graphs of biaffine planes

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Incidence graphs of biaffine planes

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.
gives:

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^n$ and voltages on Δ : $\beta(e_i) = (i, i^2) \in F^+ \times F^+$ for $i \in I$, valency q. Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups

(日)、(型)、(E)、(E)、(E)、(O)(()

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with free cyclic stabilizers of order p, and with no larger cyclic stabilizers.

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In particular, if n = 1 and q = p, the graph B(q) admits an orientably regular embedding.

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In particular, if n = 1 and q = p, the graph B(q) admits an orientably regular embedding.

Let B'(q) be a 'near-cage' obtained from B(q) by removing the perfect matching induced by e_0 with voltage (0,0).

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In particular, if n = 1 and q = p, the graph B(q) admits an orientably regular embedding.

Let B'(q) be a 'near-cage' obtained from B(q) by removing the perfect matching induced by e_0 with voltage (0,0). The automorphism of $\Delta - e_0$ given by $e_i \mapsto e_{i\xi}$ for a p. e. $\xi \in F$ lifts to an automorphism of B'(q)fixing a vertex and acting regularly on the incident edges. Therefore:

Lifts $B(q) = \Delta^{\beta}$ of the dipole Δ , with I = F = GF(q), $q = p^{n}$ and voltages on Δ : $\beta(e_{i}) = (i, i^{2}) \in F^{+} \times F^{+}$ for $i \in I$, valency q.

Aut(B(q)) was determined by Hafner [2004]; analysis of its subgroups gives:

Proposition 2

The graph B(q) admits an orientably vertex-transitive embedding with free cyclic stabilizers of order p, and with no larger cyclic stabilizers. In particular, if n = 1 and q = p, the graph B(q) admits an orientably regular embedding.

Let B'(q) be a 'near-cage' obtained from B(q) by removing the perfect matching induced by e_0 with voltage (0,0). The automorphism of $\Delta - e_0$ given by $e_i \mapsto e_{i\xi}$ for a p. e. $\xi \in F$ lifts to an automorphism of B'(q)fixing a vertex and acting regularly on the incident edges. Therefore:

Proposition 3

The graph B'(q) admits an orientably regular embedding.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - • • • • •

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i-1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

・ロト・日本・モート モー うへぐ

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i-1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

・ロト・日本・モート モー うへぐ

Problems with free cyclic stabilizers of order dividing q - 2.

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i-1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

・ロト・日本・モート モー うへぐ

Problems with free cyclic stabilizers of order dividing q - 2. But:

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

Problems with free cyclic stabilizers of order dividing q - 2. But: If $q = p^n$, n a prime, F_p is a prime field of F and $I = F \setminus F_p$, then the Galois group $Aut(F) \simeq Z_n$ induces on I a free cyclic action on the voltages δ with cycles of length n (note that $n \mid p^n - p$, by Fermat's Little Theorem).

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

Problems with free cyclic stabilizers of order dividing q - 2. But: If $q = p^n$, n a prime, F_p is a prime field of F and $I = F \setminus F_p$, then the Galois group $Aut(F) \simeq Z_n$ induces on I a free cyclic action on the voltages δ with cycles of length n (note that $n \mid p^n - p$, by Fermat's Little Theorem). Denoting the lift by $\Gamma(p^n)$, we have:

AFLN1(q): Lifts of Δ^{γ} of the dipole Δ , with $I = F^{\times}$, and voltages on Δ : $\gamma(e_i) = (i, i) \in F^+ \times F^{\times}$ for $i \in I$, valency q - 1.

Here the automorphism $e_i \mapsto e_{i\xi}$ of Δ lifts as in the previous case:

Proposition 4

AFLN1(q) admits an orientably regular embedding.

AFLN2(q): Lifts of Δ^{δ} of the dipole Δ , with $I = F^{\times} \setminus \{1\}$; voltages on Δ : $\delta(e_i) = (i, i - 1) \in F^{\times} \times F^{\times}$ for $i \in I$, valency q - 2.

Problems with free cyclic stabilizers of order dividing q - 2. But: If $q = p^n$, n a prime, F_p is a prime field of F and $I = F \setminus F_p$, then the Galois group $Aut(F) \simeq Z_n$ induces on I a free cyclic action on the voltages δ with cycles of length n (note that $n \mid p^n - p$, by Fermat's Little Theorem). Denoting the lift by $\Gamma(p^n)$, we have:

Proposition 5

For prime *n* the graph $\Gamma(p^n)$ admits an orientably vertex-transitive embedding with cyclic stabilizer of order *n*.

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x , $x \in F = GF(q), \ q \equiv 1 \mod 4$, with (q-1)/4 loops at both u, v

(日)、(型)、(E)、(E)、(E)、(O)(()

$$\begin{split} &\Delta_q^* \text{ - dipole with } q \ u \to v \text{ edges } e_x, \\ &x \in F = GF(q), \ q \equiv 1 \mod 4, \text{ with } (q-1)/4 \text{ loops at both } u, v \\ &\alpha \text{ in } F^+ \times F^+, \ \alpha(e_x) = (x, x^2); \text{ loops at } u, v \text{ receive } (0, \xi^{2i}), \ (0, \xi^{2i+1}) \end{split}$$

 $\begin{array}{l} \Delta_q^* \text{ - dipole with } q \ u \rightarrow v \text{ edges } e_x, \\ x \in F = GF(q), \ q \equiv 1 \ \text{mod } 4, \ \text{with } (q-1)/4 \ \text{loops at both } u, v \\ \alpha \ \text{in } F^+ \times F^+, \ \alpha(e_x) = (x, x^2); \ \text{loops at } u, v \ \text{receive } (0, \xi^{2i}), \ (0, \xi^{2i+1}) \\ \text{The lift } (\Delta_q^*)^{\alpha} \ \text{has order } \frac{8}{9}(d+\frac{1}{2})^2 \ \text{for } d = (3q-1)/2, \ \text{diameter } 2 \end{array}$

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x , $x \in F = GF(q)$, $q \equiv 1 \mod 4$, with (q - 1)/4 loops at both u, v α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i})$, $(0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ has order $\frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2, diameter 2 [Š 2001; McKay, Miller, Širáň 1998]

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x , $x \in F = GF(q), \ q \equiv 1 \mod 4$, with (q - 1)/4 loops at both u, v α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i}), \ (0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ has order $\frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2, diameter 2 [Š 2001; McKay, Miller, Širáň 1998]

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○○○

 Δ_q^* - dipole with $q \ u \rightarrow v$ edges e_x , $x \in F = GF(q), \ q \equiv 1 \mod 4$, with (q - 1)/4 loops at both u, v α in $F^+ \times F^+$, $\alpha(e_x) = (x, x^2)$; loops at u, v receive $(0, \xi^{2i}), \ (0, \xi^{2i+1})$ The lift $(\Delta_q^*)^{\alpha}$ has order $\frac{8}{9}(d + \frac{1}{2})^2$ for d = (3q - 1)/2, diameter 2 [Š 2001; McKay, Miller, Širáň 1998]

Proposition 6

MMS(q) have no orientably vertex-transitive embeddings.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Define a digraph on the vertex set consisting of k-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows.

Define a digraph on the vertex set consisting of k-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining the graph FMC(d, k);

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining the graph FMC(d, k); vertex-transitive graph of degree $d = 2\delta - 1$ and diameter k, order o(d, k) = ((d + 3)/2)!/((d + 3)/2 - k)!;

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining the graph FMC(d, k); vertex-transitive graph of degree $d = 2\delta - 1$ and diameter k, order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!; note that $d \ge 5$ and $3 \le k \le (d+1)/2$.

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining the graph FMC(d, k); vertex-transitive graph of degree $d = 2\delta - 1$ and diameter k, order o(d, k) = ((d+3)/2)!/((d+3)/2 - k)!; note that $d \ge 5$ and $3 \le k \le (d+1)/2$.

[MŠŠV '10] based on [Jones '05]: For any odd $d \ge 11$ and k such that $3 \le k \le (d+1)/2$ we have $Aut(FMC(d,k)) \simeq S_m$ where m = (d+3)/2.

Define a digraph on the vertex set consisting of *k*-strings of distinct symbols from $L = \{1, 2, ..., \delta + 1\}$, $3 \le k \le \delta$, as follows. From each $v = x_1x_2...x_k$ consider an arc into $v_y = x_2...x_ky$, $y \in L \setminus \{x_1, ..., x_k\}$ and also, for $1 \le i \le k - 1$, an arc into v_i obtained from v by moving x_i to the right end of the string.

Then, suppress directions and replace digons by simple edges, obtaining the graph FMC(d, k); vertex-transitive graph of degree $d = 2\delta - 1$ and diameter k, order o(d, k) = ((d + 3)/2)!/((d + 3)/2 - k)!; note that $d \ge 5$ and $3 \le k \le (d + 1)/2$.

[MŠŠV '10] based on [Jones '05]: For any odd $d \ge 11$ and k such that $3 \le k \le (d+1)/2$ we have $Aut(FMC(d,k)) \simeq S_m$ where m = (d+3)/2.

Proposition 7

For every odd $d \ge 11$ and k such that $3 \le k \le (d+1)/2$ the graph FMC(d, k) admits an orientably vertex-transitive embedding iff it is a Cayley graph. In particular, FMC(d, k) has no such embedding unless $k = (d \pm 1)/2$ or $(k, d) \in \{(5, 21), (4, 19), (3, 2q - 1)\}$, q a prime power.

Remarks

Forthcoming projects:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Forthcoming projects:

 Extension to other interesting vertex-transitive graphs for the degree-diameter and the degree-girth problems

Forthcoming projects:

- Extension to other interesting vertex-transitive graphs for the degree-diameter and the degree-girth problems
- Extension to vertex-transitive embeddings with orientation reversing automorphisms on orientable surfaces
Forthcoming projects:

- Extension to other interesting vertex-transitive graphs for the degree-diameter and the degree-girth problems
- Extension to vertex-transitive embeddings with orientation reversing automorphisms on orientable surfaces
- Extension to vertex-transitive embeddings on non-orientable surfaces

Forthcoming projects:

- Extension to other interesting vertex-transitive graphs for the degree-diameter and the degree-girth problems
- Extension to vertex-transitive embeddings with orientation reversing automorphisms on orientable surfaces
- Extension to vertex-transitive embeddings on non-orientable surfaces

THANK YOU!